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Classical solutions of an electron in magnetized wedge billiards
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We have studied the classical solutions of a free electron constrained to move inside a circular wedge of
angleuw , in the presence of a homogeneous constant magnetic fieldB. These billiards have broken rotational
symmetry. AsB anduw are varied, the apex of the billiards affects the classical dynamics in an important way.
We find that for billiards with angles (A521)/2<uw<p/2, the dynamics exhibits areentranttransition as the
field increases. The transition is fromregular-to-mixed-to-chaotic-to-mixed-to-chaotic regimes. The reentrance
is connected to the appearance and disappearance of periodic orbits nucleated at the boundaries of these
billiards as the field increases. There isno reentrance whenuw.p/2. In the latter case asB increases the
dynamics goes from quasiintegrable, to intermediate and then to chaotic whispering gallery Larmor modes.
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Significant progress has been made in the last two
cades to understand the emergence of chaotic classica
havior and its quantum counterpart@1–5#. Two-dimensional
billiards have played a very important role in the develo
ment and understanding of the extreme limits of compl
integrability, e.g., occurring in the circular disk billiard, an
complete generic chaos in stadium billiards@5#. These bil-
liards have also been studied experimentally in microw
cavities @5# and in electronic mesoscopic billiards@6#. One
variant examined in this paper involves removing a sec
from an otherwise rotationally invariant circular disk@7,8#. A
wedge that has an angleuw larger thanp is called a pacman
billiard, and if it is smaller thanp, a sector billiard. The
electronic response of triangles@9# and, in particular, of pac-
men with a finite width radial bar removed in the cen
under transverse constant magnetic fields@7,8#, have been
studied experimentally. There are also early theoretical s
ies of a charged particles in planarsmoothboundaries in a
constant magnetic fields@10–13#. In this paper we analyze
the classical dynamics of sectors and pacmen billiards w
different angles in homogeneous magnetic fields. O
wedge billiards in a gravitational field have been stud
theoretically by Szeredi and Goodings@14# and more re-
cently experimentally@15#. In the zero magnetic field cas
we found@16# that the quantum problem has arbitraryfrac-
tional angular momentum solutions as a function ofuw .
Here we analyze the changes produced by a homogen
magnetic field. In a future paper we will consider the cor
sponding quantum problem.

To characterize the transition between the differ
magnetic dynamical regimes we introduce a ‘‘frustrati
parameter’’ F; Take r w the radius of the wedge an
l B52Mv/qB the Larmor radius, wherev is the
velocity, M the mass, and q the electron charge
Then F5@area( f ull circle)#/@area( larmor circle)#
5(r w / l B)2. Note that we have definedF in terms of the
entire billiard area, since it is more convenient when co
paring different wedges of the same circular billiard. T
presence of the field breaks time reversal invariance and
wedge geometry breaks rotational invariance. We analyze
1063-651X/2002/66~4!/047201~4!/$20.00 66 0472
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dynamics for differentF values by looking at specific con
figuration space trajectories. We compute the Poinca´-
Birkhoff ~PB! surfaces of section for each one of the cas
considered, as well as their corresponding average Lyapu
exponents. The outline of the paper is as follows: In Sec
we define the model and the approach we introduce to g
metrically calculate the dynamical solutions. In Sec. III w
present the bulk of our results for the different pacmen a
sector wedges and magnetic fields. Finally in Sec. IV
briefly state our main conclusions.

The model

Consider a wedge cut from a circular disk with radiusr w
and angleuw . The particle moves at a constant veloci
along arcs of Larmor circles with radiusl B , and it has elastic
collisions with the wedge walls. We use polar coordina
(r,u) with the origin at the apex of the wedge billiard an
with u50 pointing horizontal along the center of the wedg
The particle is free to move within2uw/2<u<uw/2 and 0
,r,r w . The particle has the velocity (vr ,vu) when it en-
counters the maximum radius of the wedge. The norma
the outer circle is perpendicular toêu , sovu is unchanged by
the collisions. Because the collisions are elastic, the ene
(m/2)@vr

21(rvu)2# is constant. This requires thatvr⇒
2vr . Similarly, for a collision with a wedge radial wall
(vr ,vu)⇒(vr ,2vu). The geometry of the trajectory is no
changed by a scaling of time or radius~with proper adjust-
ments to the magnetic fieldB). Thus we can use dimension
less coordinates wherer w51 and uvW u51. In the low-field
limit, F!1, the oriented trajectory sections are almo
straight lines and become parts of chords of the circle
which the wedge is embedded. The regular pattern
bounces of the outer perimeter is disturbed by the rever
of direction from bounces of the side walls. The latt
bounces can be removed by constructing an infinite cove
space containing a sequence of copies of the wedge.
covering space is constructed by lifting copies of the wed
onto an infinite spiral inu. Adjacent copies on the spiral ar
reflections of the area of the actual wedge. When the tra
tory of the particle is lifted onto this covering space, ea
bounce with a sidewall is replaced by a smooth tran
©2002 The American Physical Society01-1
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tion into an adjacent wedge copy. Thus only the boun
with the outer periphery remain and the trajectory on
covering space consists of a series of chords at equal a
increments on the spiral. The trajectories will be repeat
strictly if uw and the chord angleuc are commensurate
quc5p2uw , wherep andq are relative primes and both ar
positive@17#. In general, ifuc/2uw5p/q, where p and q are
relatively prime, this corresponds to a (p,q) periodic closed
orbit, where the particle bouncesp times off the periphery
and traverses 23q copies of the wedge before the trajecto
closes.

For the zero-field case, the anglef between the chord a
the particle meets the circular boundary and the norma
that periphery determines the angle subtended by the ch
The range 0<f<p/2 denotes counterclockwise motion an
2p/2<f,0 clockwise. We use sinf instead off, since it
is proportional to the transverse angular momentumrsinf in
the full circle (;rW`vW ) and together withu they can be used
as the Birkhoff conjugate dynamical variables. Note th
once a particle bounces off the boundary, it will always
turn to the boundary to bounce again before completin
full 2p-rotation in the magnetic field. For high fields,F
@1, a particle will chaotically bounce about the bounda
We call these skipping orbit trajectories ‘‘Larmor chao
whispering gallery modes’’~LCWGM!.

Results

We start by considering the surface of section and c
figuration space orbits. We have taken four typical init

FIG. 1. This figure shows results for ap/3 sector billiard em-
bedded in the drawn full circle with anF550. The trajectories in
configuration space are shown in panels~a–c!, for initial conditions
with u50 and sinf equal to~a! 0.5, ~b! 0.6, and~c! 0.7, respec-
tively. The last figure shows the Poincare´-Birkhoff ~PB! surface of
section for the same initial conditions, plus one more with sinf
50.8. Here we note the clear presence of Larmor chaotic whis
ing gallery modes~LCWGM!.
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conditions to carry out the calculations. They are sinf0
50.5(a), 0.6~b!, 0.7~c!, and 0.8~d!. We start discussing re
sults for two typical angles,p/3, and the golden meana,
wherea[(A521)/2 is approximated by its computer prec
sion expression. For a very weak magnetic field (F5 1

6

31026) the trajectories are periodic and almost indist
guishable from the zero magnetic field case, except for
fact that they have a definite orientation. The orbits a
closed only if the chord length is commensurate with t
wedge angle. An interesting case corresponds to theuw
5p/3 with sinf050.5, that yields an equilateral triangle o
bit. The orbit is closed becausef5p/6 and thus the zero
field chord angle,uc5p22f52p/3, is commensurate with
the wedge angleuw5p/3. There is a small precession onu

r-

FIG. 2. Here we show results for thea sector in a field ofF
550 with the same initial conditions as in the previous figure.

FIG. 3. Lyapunov exponentl as a function ofF for different
billiard angles. Note the minimum inl vs F for a<uw<p/2. Other
billiards in contrast have a monotonic increase ofl as a function of
F. See text for a full description of this figure.
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because of the nonzero magnetic field that slightly pertu
the zero-field chord angleuc . For all angular values in a
very small field the orbits are integrable in nature with cle
caustics for initial conditions~a! and ~c!. In those cases the
PB sections are still made of horizontal lines, which me
that angular momentum for this field is still basically co
served.

As the field increases, many of the orbits become appr
mately chaotic. For these orbits, it is still useful to ass
(p,q) values. It is possible, however, forp andq to be rela-
tively nonprime because the chord lengths vary accordin
the starting angleu0. In Fig. 1 we show results for a highe
magnetic field,F550, in the p/3 sector. In this case we
clearly see that for the initial conditions considered lead
the LCWGM. The particle moves around the boundary a
the orbits have radii that are smaller than the wedge rad
In the PB sections we see a completely irregular behavio
Fig. 2 we show the corresponding results for the irrationaa
sector. In this case the LCWGM are not clearly present
as well defined as in thep/3 sector forF550. Next we

FIG. 4. PB sections for the sector billiard with angle 3p/11, for
initial conditions (u0 ,sinf0)5(0.25,0.4), ~0.0,0.5!, ~0.0,0.6!,
~0.0,0.7!, ~0.0,0.8!, and ~0.0,0.9!. Note the reentrant behavior fo
fields from F50.1 to F57, and again the reemergence of fu
chaos forF550.
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discuss the pacmen cases forF550. For thisF we have that
l B< 1

7 of the wedge radius, definitely in the high-field re
gime. The orbits can be separated into bulk and bound
trajectories. The bulk trajectories are standard free space
mor closed orbits that do not touch the wedge boundary.
second more interesting type of orbits are the chao
LCWGM orbits that are formed by small circular arcs th
rotate around the boundary. Note that if we increase the fi
further, as long as an orbit touches the boundary once, it
be generally chaotic due to the apexes in the wedge billia
For the pacman with initial conditions~a–b! and angle 5p/3,
we find complete LCWGM that move about the bounda
The situation is different in case~c!. In this case the particle
moves in a series of small arcs about the boundary of
wedge. The sizes of the arcs change only when the par
interacts with one of the three boundary discontinuities: o
at the apex and two at the outer ends of the wedge wall

Lyapunov exponent results: Reentrance

In Fig. ~3! we show our results for several sector angl
a,p/4,3p/11,p/3, p/2 and pacmen angle complements
2p/3,5p/3,19p/11,7p/4 and the irrational complement 2p
2a. There we see that the Lyapunov exponent as a func
of F is positive definite for values ofF>0.1 indicating that
the field breaks integrability fully in both the sectors a
pacmen. Note a remarkable minimum for the sectors w
angles in the windowa<uw<p/2. Such reentrance is no
seen in wedges with angles outside of this window. Note t
the sectors are more chaotic than the pacmen, measure
the magnitude of the Lyapunov exponent. This makes
reentrance more surprising since the periodic orbits eme
from a sea of stronger chaos appearing in the window

FIG. 5. Configuration space trajectories specifically forF57
and wedge angle 3p/11. The panels~a–b! denote the orbits shown
in the PB sections. We have a nucleation of periodic orbits em
ing from the sea of chaos. See text for further discussions of
figure.
1-3



th
ea

th

n

c
of
m
p

he

re
re
se
ld
io
r

de
.

of a
eous
rd.
pa-

of
the
pro-
mi-

lar
ons
rant

an
it
lay

er-
to
on
see
ally.
to

tum

T
l

BRIEF REPORTS PHYSICAL REVIEW E66, 047201 ~2002!
sector angles. A possible reason for this difference and
quasiregularity reentrance is that special orbits can nucl
out of the chaotic sea as the field increases.

To further analyze this situation we decided to look at
PB surfaces of section for the sector with angle 3p/11 as a
function of field withF51026, 0.1, 1.0, 5.0, 7.0, and 50. I
this case the initial conditions were (u0 ,sinf0)5(0.25, 0.4!,
~0, 0.5!, ~0, 0.6!, ~0, 0.7!, ~0, 0.8!, and~0, 0.9!. In Fig. 4 we
clearly see the transition from integrable to chaotic whenF
goes from 1 to 5, and then forF57 there are higher periodi
orbits, indicated by elliptic islands with positive values
sinf. As the field increases further the dynamics beco
fully chaotic again. These results led us to consider the s
cific orbits responsible for this reentrant transition in t
cases considered. In Fig. 5 we show in panels~a–c! the
transformation of the basic fish–like orbit in~a!. This orbit is
a modification of the zero-field~1,1! orbit. That orbit gets
convoluted as the initial conditions change and they are
resented by the elliptic regions in the PB panel in the figu

Thus we see that the region of reentrant stability is ba
on the (1,1) orbit and a few simple multiples. For small fie
values, a (1,1) orbit corresponds to a simple circulat
within the wedge. ForF57, this simple loop has folded ove
once so that it covers less area. This orbitcompletelydisap-
pears and then reappears as F increases. There is no evi
that the reentrant transition is period doubling generated
cs
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In conclusion, we have studied the classical dynamics
charged particle in the presence of a constant homogen
magnetic field constrained to move inside a wedge billia
In this problem the Hamilton-Jacobi equation is not se
rable. The competition between the rotational invariance
the magnetic field and the breaking of this symmetry in
wedges, plus the presence of the apexes in the billiards,
duces the chaotic orbits. We have found a reentrant dyna
cal transition in sector billiards with angles smaller thanp/2,
that is directly connected with the existence of particu
orbits that reappear at weak fields. The boundary conditi
play a fundamental role in the appearance of this reent
transition.

For higher fields, the Larmor radius is much smaller th
the wedge radius. A particle will continue to touch a wall if
has already touched a wall. The apexes in the billiards p
an important role in producing the Larmor chaotic whisp
ing gallery modes at large fields. Our initial motivation
study wedge billiards came from transport experiments
pacman like billiards. From the results presented here we
that there are new effects that can be studied experiment
To make a direct connection with experiment we need
treat the quantum problem. We shall address the quan
problem in a future publication.
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