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Classical solutions of an electron in magnetized wedge billiards

A. Gongora-T+2 Jorge V. Jos@ and S. Schaffnér
! Centro de Ciencias Bicas, Universidad Nacional Automa de Mgico, Apartheid Postal 48-3, 62250 Cuernavaca, Morelos, Mexico
2Physics Department and Center for the Interdisciplinary Research on Complex Systems, Northeastern University, Boston,
Massachusetts 02115
(Received 23 April 2002; published 4 October 2p02

We have studied the classical solutions of a free electron constrained to move inside a circular wedge of
angled,,, in the presence of a homogeneous constant magneticidltdese billiards have broken rotational
symmetry. AsB and 6,, are varied, the apex of the billiards affects the classical dynamics in an important way.

We find that for billiards with angles\5— 1)/2< 6,,< 7/2, the dynamics exhibits @entranttransition as the

field increases. The transition is fromgular-to-mixed-to-chaotic-to-mixed-to-chaotic regiméke reentrance

is connected to the appearance and disappearance of periodic orbits nucleated at the boundaries of these
billiards as the field increases. Therenis reentrance whem,,> 7/2. In the latter case aB increases the
dynamics goes from quasiintegrable, to intermediate and then to chaotic whispering gallery Larmor modes.
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Significant progress has been made in the last two dedynamics for differenf values by looking at specific con-
cades to understand the emergence of chaotic classical béguration space trajectories. We compute the Poincare
havior and its quantum counterp&ft—5]. Two-dimensional ~ Birkhoff (PB) surfaces of section for each one of the cases
billiards have played a very important role in the develop-considered, as well as their corresponding average Lyapunov
ment and understanding of the extreme limits of completé&xponents. The outline of the paper is as follows: In Sec. I
integrability, e.g., occurring in the circular disk billiard, and We define the model and the approach we introduce to geo-
complete generic chaos in stadium billiafds. These bil- metrically calculate the dynamical solutions. In Sec. Ill we

liards have also been studied experimentally in microwavepre?ent thg bulk ogour resut!ts ff.o{ dthqumeilrer)t psacme;(]/ and
cavities[5] and in electronic mesoscopic billiardlé]. One Sector wedges and magnetic Tields. Fnaily in- Sec. we

. . . . - - riefly stat r main conclusions.
variant examined in this paper involves removing a sectorb elly state our main conclusions

from an otherwise rotationally invariant.circular disk8]. A The model
wedge that has an angtg, larger thanmr is called a pacman . ) ) ) )
billiard, and if it is smaller thanr, a sector billiard. The Consider a wedge cut from a circular disk with radiys

and angled,,. The particle moves at a constant velocity
along arcs of Larmor circles with radilig, and it has elastic
collisions with the wedge walls. We use polar coordinates
0(p,9) with the origin at the apex of the wedge billiard and
with #=0 pointing horizontal along the center of the wedge.

electronic response of trianglf3] and, in particular, of pac-
men with a finite width radial bar removed in the center
under transverse constant magnetic fidlds$], have been

studied experimentally. There are also early theoretical stu

Ifosn:tfaitcr?]zrgr?edtiE?irglagsol—nlglal%a:;\?sthgogrnaznziallp zae The particle is free to move withir- 6,,/2< 6<6,,/2 and 0
9 ) pap Y <p<ry. The particle has the velocity(,v,) when it en-

the classical dynqmics of sectors and pacmen pilliards Wiﬂ&ounters the maximum radius of the wedge. The normal to
different angles in homogeneous magnetic fields. Ope ircle i dicular & . h db
wedge billiards in a gravitational field have been studied:Ehe ouhe_r_CIrC eés perpenthlcu alrl_eg_, SOvy 1S lect' antgr;]e y
theoretically by Szeredi and Goodin§$4] and more re- € co |2§|ons. zec"’?use € coflisions are elastic, the energy
cently experimentallyf15]. In the zero magnetic field case (m/2)[ug+.(ru(,) ] is constgnt. Th's requires th.atP:

we found[16] that the quantum problem has arbitrdrsic- —v,. Similarly, for a collision with a Wedge_ radial .Wall,
tional angular momentum solutions as a function &jf. (v,,v0)=(v,,~v,). The geometry of the trajectory is not

changed by a scaling of time or radigsith proper adjust-
Here we gnalyze the changes produc_ed by a homogeneoH,Fentg to th{a magnet?c fiel®). Thus wgf:an Ft)Jsepdimeglsion-
magnetic field. In a future paper we will consider the corre-

sponding quantum problem. less coordinates wheng,=1 and|v|=1. In the low-field

To characterize the transition between the differenﬁimit’ F<1, the oriented trajectory sections are almost

; ; ; : P .~ _straight lines and become parts of chords of the circle in
magnetic ?yr.lamlcal regimes we intraduce a frUStrat'onwhich the wedge is embedded. The regular pattern of
parameter” F; Take r,, the radius of the wedge and

: ) bounces of the outer perimeter is disturbed by the reversals
lg=—Mv/qB the Larmor radius, wherev is the ot girection from bounces of the side walls. The latter
velocity, M the mass, andq the electron charge. poynces can be removed by constructing an infinite covering
Then Izz[area(full circle)]/[area(larmor circle)]  gpace containing a sequence of copies of the wedge. This
=(rw/lg)°. Note that we have defineH in terms of the covering space is constructed by lifting copies of the wedge
entire billiard area, since it is more convenient when COMypnto an infinite Spira| ing. Adjacent Copies on the Spira| are
paring different wedges of the same circular billiard. Thereflections of the area of the actual wedge. When the trajec-
presence of the field breaks time reversal invariance and thery of the particle is lifted onto this covering space, each
wedge geometry breaks rotational invariance. We analyze thgounce with a sidewall is replaced by a smooth transi-
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~0.27 o 0.27 FIG. 2. Here we show results for the sector in a field ofF

FIG. 1. This figure shows results fora/3 sector billiard em- =50 with the same initial conditions as in the previous figure.

bedded in the drawn full circle with af=50. The trajectories in

configuration space are shown in pan@sg, for initial conditons ~ conditions to carry out the calculations. They are ¢n
with #=0 and sing equal to(a) 0.5, (b) 0.6, and(c) 0.7, respec- =0.5(a), 0.6b), 0.7(c), and 0.8d). We start discussing re-
tively. The last figure shows the PoincaBekhoff (PB) surface of  sults for two typical angless/3, and the golden meaa,
section for the same initial conditions, plus one more withdsin Whereaz(\/gfl)/z is approximated by its computer preci-
=0.8. Here we note the clear presence of Larmor chaotic whispersion expression. For a very weak magnetic fieﬁ:(%

ing gallery modegLCWGM). X 10" %) the trajectories are periodic and almost indistin-

tion into an adjacent wedge copy. Thus only the bounce uishable from the zero mggnetic_field case, except_for the
with the outer periphery remain and the trajectory on th act that the_y have a definite erentat|on. The orb!ts are
covering space consists of a series of chords at equal angféesed only if the chord length is commensurate with the
increments on the spiral. The trajectories will be repeatingvedge angle. An interesting case corresponds to de
strictly if 6, and the chord angl®, are commensurate, = 7/3 With sing,=0.5, that yields an equilateral triangle or-
gq0.= ngw, Wherep andq are relative primes and both are bit. The orbit is closed becausﬁz /6 and thus the zero-
positive[17]. In general, if6./26,,= p/q, where p and q are field chord anglef .= 7—2¢=2m/3, is commensurate with
relatively prime, this corresponds to p,() periodic closed the wedge angl#,,= 7/3. There is a small precession én
orbit, where the particle bouncgstimes off the periphery
and traverses 2 g copies of the wedge before the trajectory i (time-?)
closes.
For the zero-field case, the anglebetween the chord as 1.0 Legend
the particle meets the circular boundary and the normal ta
that periphery determines the angle subtended by the chorc
The range & ¢=< /2 denotes counterclockwise motion and
—1/2< <0 clockwise. We use sifiinstead of¢, since it
is proportional to the transverse angular momentsin ¢ in

the full circle (~r/\v) and together witl9 they can be used ¢ 5
as the Birkhoff conjugate dynamical variables. Note that
once a particle bounces off the boundary, it will always re-
turn to the boundary to bounce again before completing a

full 2 7r-rotation in the magnetic field. For high fields,

>1, a particle will chaotically bounce about the boundary.

We call these skipping orbit trajectories “Larmor chaotic
whispering gallery modes{(LCWGM). 0.1 0.5 1 57 15 50
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FIG. 3. Lyapunov exponent as a function ofF for different
billiard angles. Note the minimum x vs F for a< 6,,< w/2. Other

We start by considering the surface of section and conbilliards in contrast have a monotonic increase afs a function of
figuration space orbits. We have taken four typical initial F. See text for a full description of this figure.

Results
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-022 0 022 FIG. 5. Configuration space trajectories specifically For7
F=50 and wedge angle®/11. The paneléa—b denote the orbits shown
in the PB sections. We have a nucleation of periodic orbits emerg-
ing from the sea of chaos. See text for further discussions of this
figure.
0.50 1 0.50
: o 2 discuss the pacmen cases for 50. For thiskF we have that
@ 7] Ig=3 of the wedge radius, definitely in the high-field re-
—0.50 - —0.50 gime. The orbits can be separated into bulk and boundary
trajectories. The bulk trajectories are standard free space Lar-

mor closed orbits that do not touch the wedge boundary. The
—023 0 022 -022 0 022 second more interesting type of orbits are the chaotic
FIG. 4. PB sections for the sector billiard with angle/a1, for ~LCWGM orbits that are formed by small circular arcs that
initial  conditions (@, sin ¢y)=(0.25,0.4), (0.0,0.5, (0.0,0.6, rotate around the boundary. Note that if we increase the field
(0.0,0.7, (0.0,0.8, and (0.0,0.9. Note the reentrant behavior for further, as long as an orbit touches the boundary once, it will
fields from F=0.1 to F=7, and again the reemergence of full be generally chaotic due to the apexes in the wedge billiards.
chaos forF=50. For the pacman with initial conditiori®a—b and angle 5r/3,
we find complete LCWGM that move about the boundary.
because of the nonzero magnetic field that slightly perturbg—he S|tu_at|on |s_d|fferent in case). In this case the particle
moves in a series of small arcs about the boundary of the

:/Teer Zser:woa;lflliilgldc?f?édofllori]tgslicré ::nct)tra a:glballggi]rl1J lﬁgt\é?tleu\?v?tr:ncliarwedge' The sizes of the arcs change only when the particle
y'S S I g interacts with one of the three boundary discontinuities: one
caustics for initial conditionga) and(c). In those cases the

PB sections are still made of horizontal lines, which meanat the apex and two at the outer ends of the wedge walls.

that angular momentum for this field is still basically con-
served.

As the field increases, many of the orbits become approxi- In Fig. (3) we show our results for several sector angles;
mately chaotic. For these orbits, it is still useful to assigna,w/4,37w/11,mw/3, w/2 and pacmen angle complements of
(p.q) values. It is possible, however, fprandq to be rela-  2#/3,57/3,197/11,77/4 and the irrational complementm2
tively nonprime because the chord lengths vary according te- . There we see that the Lyapunov exponent as a function
the starting angl@,. In Fig. 1 we show results for a higher of F is positive definite for values df=0.1 indicating that
magnetic field,F =50, in the w/3 sector. In this case we the field breaks integrability fully in both the sectors and
clearly see that for the initial conditions considered lead topacmen. Note a remarkable minimum for the sectors with
the LCWGM. The particle moves around the boundary andangles in the windowy< 6,,< #/2. Such reentrance is not
the orbits have radii that are smaller than the wedge radiuseen in wedges with angles outside of this window. Note that
In the PB sections we see a completely irregular behavior. lithe sectors are more chaotic than the pacmen, measured by
Fig. 2 we show the corresponding results for the irratianal the magnitude of the Lyapunov exponent. This makes the
sector. In this case the LCWGM are not clearly present noreentrance more surprising since the periodic orbits emerge
as well defined as in ther/3 sector forF=50. Next we from a sea of stronger chaos appearing in the window of

Lyapunov exponent results: Reentrance
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sector angles. A possible reason for this difference and the In conclusion, we have studied the classical dynamics of a
quasiregularity reentrance is that special orbits can nucleatharged particle in the presence of a constant homogeneous
out of the chaotic sea as the field increases. magnetic field constrained to move inside a wedge billiard.
To further analyze this situation we decided to look at the!n this_problem the Hamilton-Jacobi equation is not sepa-
PB surfaces of section for the sector with angle/BL as a  'aPle. The competition between the rotational invariance of
function of field withF=10"%, 0.1, 1.0, 5.0, 7.0, and 50. In € magnetic field and the breaking of this symmetry in the
this case the initial conditions werd{, sindy)=(0.25, 0.2 wedges, plus the_: presence of the apexes in the billiards, pro-
' 0 S R duces the chaotic orbits. We have found a reentrant dynami-
(0,09, (0,08, (0,0.7, (0, 0.8, and(0, 0.9. In Fig. 4 we ) ransition in sector billiards with angles smaller tha2,
clearly see the transition from integrable to chaotic wken that is directly connected with the existence of particular
goes from 1 to 5, and then fér="7 there are higher periodic orhits that reappear at weak fields. The boundary conditions
orbits, indicated by elliptic islands with positive values of play a fundamental role in the appearance of this reentrant
sing. As the field increases further the dynamics becomdransition.
fully chaotic again. These results led us to consider the spe- For higher fields, the Larmor radius is much smaller than
cific orbits responsible for this reentrant transition in thethe wedge radius. A particle will continue to touch a wall if it
cases considered. In Fig. 5 we show in pan@so the has already touchgd a waII.. The apexes in the b||||arqs play
transformation of the basic fish—like orbit {a). This orbitis 2" Important role in producing the Larmor chaotic whisper-

e P . : ing gallery modes at large fields. Our initial motivation to
a modification of t.h(_e_zero f|g|(_131,1) orbit. That orbit gets study wedge billiards came from transport experiments on
convoluted as the initial conditions change and they are re

ted by the ellinti . in the PB Lin the fi p[:')acman like billiards. From the results presented here we see
res_ﬁ? ed by the teh IFt)'lﬁ regions mf € h p?nte blr;t € E)ure%[]at there are new effects that can be studied experimentally.
us we see that the region ot reentrant SIabilily 1S Das€G, a1e a direct connection with experiment we need to

on the (1,1) orbit and a few simple multiples. For small fieldtreat the quantum problem. We shall address the quantum
values, a (1,1) orbit corresponds to a simple circulatiorbroblem in a future publication

within the wedge. FoF =7, this simple loop has folded over

once so that it covers less area. This odumpletelydisap- The work by A.G.T. was supported in part by CONACYT
pears and then reappears as F increases. There is no evideagel UNAM, Mexico. J.V.J. thanks NSF for partial financial
that the reentrant transition is period doubling generated. support.
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